How do you solve x^2+3x-9=0x2+3x9=0 by completing the square?

1 Answer
May 25, 2016

x=-3/2+-(3sqrt(5))/2x=32±352

x~~1.854" "and" " -4.854 x1.854 and 4.854

Explanation:

Not that standard form is y=ax^2+bx+cy=ax2+bx+c

and that vertex form is y=color(red)(a)(x+color(red)(b/(2a)))^2+c +ky=a(x+b2a)2+c+k

where kk is a correction constant in your case a=1a=1

'~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given:" "y=x^2+3x-9=0 y=x2+3x9=0

write as: 0=(x^2+3x)-90=(x2+3x)9

Add the correction constant kk

0=(x^2+3x)-9+k0=(x2+3x)9+k

Remove the xx from 3x3x

0=(x^2+3)-9+k0=(x2+3)9+k

Halve the 3

0=(x^2+3/2)-9+k0=(x2+32)9+k

Move the power from x^2x2 to outside the bracket

0=(x+3/2)^2-9+k" "color(red)(larr "the error comes from "a(3/(2a))^2)0=(x+32)29+k the error comes from a(32a)2

but k+(3/2)^2=0 => k=-9/4k+(32)2=0k=94 giving

color(blue)("Vertex form "->0=(x+3/2)^2- 45/4Vertex form 0=(x+32)2454
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Take the -45/4454 to the other side of the equals and change its sign.

(x+3/2)^2=+45/4(x+32)2=+454

Square root both sides

x+3/2=sqrt(45/4)x+32=454

Move the 3/232 to the other side of =

x=-3/2+-sqrt(5xx9)/sqrt(4)x=32±5×94

color(blue)(x=-3/2+-(3sqrt(5))/2)x=32±352

color(blue)(x~~1.854" "and" " -4.854 ) x1.854 and 4.854

Tony B