How do you solve (x^2-4x)^(2)-25=0?

1 Answer

x=5 or x=-1 and if imaginary solutions are allowed, x=2+i, x=2-i

Explanation:

add 25 to both sides

(x^2-4x)^2=25

Square root both sides

x^2-4x=\pm5

x^2-4x-5=0 or x^2-4x+5=0

(x-5)(x+1)=0 but x^2-4x+5=0 has no real solutions

x=5 or x=-1

~~~~~

If imaginary solutions are allowed, then the solutions to x^2-4x+5=0 are (using the quadratic formula):

x = (-b \pm sqrt(b^2-4ac)) / (2a)

with x=1, b=-4, c=5

x = (4 \pm sqrt((-4)^2-4(1)(5))) / (2(1))

x = (4 \pm sqrt(16-20)) / 2

x = (4 \pm sqrt(-4)) / 2

x = (4 \pm 2i) / 2 =>x=2+i, x=2-i