How do you solve #x^2 + 5x - 2 = 0#?
1 Answer
Jan 5, 2017
Explanation:
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
We can solve the given quadratic by completing the square and using the difference of squares identity with
I will multiply it by
#0 = 4(x^2+5x-2)#
#color(white)(0) = 4x^2+20x-8#
#color(white)(0) = (2x)^2+2(2x)(5)+25-33#
#color(white)(0) = (2x+5)^2-(sqrt(33))^2#
#color(white)(0) = ((2x+5)-sqrt(33))((2x+5)+sqrt(33))#
#color(white)(0) = (2x+5-sqrt(33))(2x+5+sqrt(33))#
#color(white)(0) = 4(x+5/2-sqrt(33)/2)(x+5/2+sqrt(33)/2)#
Hence:
#x = -5/2+-sqrt(33)/2#