How do you solve x^2+5x+8=0x2+5x+8=0?
1 Answer
Explanation:
Pre-multiply by
a^2-b^2 = (a-b)(a+b)a2−b2=(a−b)(a+b)
with
0 = 4(x^2+5x+8)0=4(x2+5x+8)
=4x^2+20x+32=4x2+20x+32
=(2x)^2+2(2x)(5)+32=(2x)2+2(2x)(5)+32
=(2x+5)^2-25+32=(2x+5)2−25+32
=(2x+5)^2+7=(2x+5)2+7
=(2x+5)^2-(sqrt(7)i)^2=(2x+5)2−(√7i)2
=((2x+5)-sqrt(7)i)((2x+5)+sqrt(7)i)=((2x+5)−√7i)((2x+5)+√7i)
=(2x+5-sqrt(7)i)(2x+5+sqrt(7)i)=(2x+5−√7i)(2x+5+√7i)
So:
So:
Alternatively, use the quadratic formula:
The equation
This has roots given by the quadratic formula:
x = (-b+-sqrt(b^2-4ac))/(2a)x=−b±√b2−4ac2a
(-5+-sqrt(5^2-(4*1*8)))/(2*1)−5±√52−(4⋅1⋅8)2⋅1
=(-5+-sqrt(25-32))/2=−5±√25−322
=(-5+-sqrt(-7))/2=−5±√−72
=(-5+-sqrt(7)i)/2=−5±√7i2
=-5/2+-sqrt(7)/2i=−52±√72i