How do you solve x^2+5x+8=0x2+5x+8=0?

1 Answer
Apr 30, 2016

x = -5/2+-sqrt(7)/2ix=52±72i

Explanation:

Pre-multiply by 44 (to avoid arithmetic with fractions), complete the square then use the difference of squares identity:

a^2-b^2 = (a-b)(a+b)a2b2=(ab)(a+b)

with a=(2x+5)a=(2x+5) and b=sqrt(7)ib=7i as follows:

0 = 4(x^2+5x+8)0=4(x2+5x+8)

=4x^2+20x+32=4x2+20x+32

=(2x)^2+2(2x)(5)+32=(2x)2+2(2x)(5)+32

=(2x+5)^2-25+32=(2x+5)225+32

=(2x+5)^2+7=(2x+5)2+7

=(2x+5)^2-(sqrt(7)i)^2=(2x+5)2(7i)2

=((2x+5)-sqrt(7)i)((2x+5)+sqrt(7)i)=((2x+5)7i)((2x+5)+7i)

=(2x+5-sqrt(7)i)(2x+5+sqrt(7)i)=(2x+57i)(2x+5+7i)

So: 2x = -5+-sqrt(7)i2x=5±7i

So: x = -5/2+-sqrt(7)/2ix=52±72i

color(white)()
Alternatively, use the quadratic formula:

The equation x^2+5x+8 = 0x2+5x+8=0 is of the form ax^2+bx+c = 0ax2+bx+c=0 with a=1a=1, b=5b=5 and c=8c=8.

This has roots given by the quadratic formula:

x = (-b+-sqrt(b^2-4ac))/(2a)x=b±b24ac2a

(-5+-sqrt(5^2-(4*1*8)))/(2*1)5±52(418)21

=(-5+-sqrt(25-32))/2=5±25322

=(-5+-sqrt(-7))/2=5±72

=(-5+-sqrt(7)i)/2=5±7i2

=-5/2+-sqrt(7)/2i=52±72i