How do you solve #x^2+6x-16=0#?
1 Answer
Mar 27, 2016
Explanation:
Find two factors of
Hence we find:
#0 = x^2+6x-16 = (x+8)(x-2)#
So
Alternatively, complete the square then use the difference of squares identity:
#a^2-b^2 = (a-b)(a+b)#
with
#0 = x^2+6x-16#
#=(x+3)^2-9-16#
#=(x+3)^2-25#
#=(x+3)^2-5^2#
#=((x+3)-5)((x+3)+5)#
#=(x-2)(x+8)#
Hence zeros