How do you solve #x^2+6x-5=0# by completing the square?
2 Answers
Explanation:
For a quadratic
In this case,
Move
Explanation:
#"to solve using "color(blue)"completing the square"# add
#(1/2"coefficient of the x-term")^2" to both sides"#
#"that is " (6/2)^2=9#
#rArr(x^2+6xcolor(red)(+9))-5=0color(red)(+9)#
#rArr(x+3)^2-5=9#
#"add 5 to both sides"#
#(x+3)^2cancel(-5)cancel(+5)=9+5#
#rArr(x+3)^2=14#
#color(blue)"take the square root of both sides"#
#sqrt((x+3)^2)=color(red)(+-)sqrt14larr" note plus or minus"#
#rArrx+3=+-sqrt14#
#"subtract 3 from both sides"#
#xcancel(+3)cancel(-3)=-3+-sqrt14#
#rArrx=-3+-sqrt14#