How do you solve x^2 + 7x - 3 = 0x2+7x3=0?

1 Answer
Sep 11, 2015

The solutions are
color(blue)(x=(-7+sqrt(61))/2x=7+612

color(blue)(x=(-7-sqrt(61))/2x=7612

Explanation:

The equation x^2+7x-3=0x2+7x3=0 is of the form color(blue)(ax^2+bx+c=0ax2+bx+c=0 where:
a=1, b=7, c=-3a=1,b=7,c=3

The Discriminant is given by:
Delta=b^2-4*a*c

= (7)^2-(4*1* (-3))

= 49 +12= 61

The solutions are found using the formula
x=(-b+-sqrtDelta)/(2*a)

x = (-7+-sqrt(61))/(2*1) = (-7+-sqrt(61))/2

The solutions are
color(blue)(x=(-7+sqrt(61))/2

color(blue)(x=(-7-sqrt(61))/2