How do you solve x^2-9x+8=0x29x+8=0?

1 Answer
Mar 12, 2016

x=8,1x=8,1

Explanation:

color(blue)(x^2-9x+8=0x29x+8=0

This is a Quadratic equation (in form ax^2+bx+c=0ax2+bx+c=0)

Use Quadratic formula

color(brown)(x=(-b+-sqrt(b^2-4ac))/(2a)x=b±b24ac2a

Where

color(blue)(a=1,b=-9,c=8a=1,b=9,c=8

Substitute the values in the formula

rarrx=(-(-9)+-sqrt(-9^2-4(1)(8)))/(2(1))x=(9)±924(1)(8)2(1)

rarrx=(9+-sqrt(81-32))/(2)x=9±81322

rarrx=(9+-sqrt(49))/(2)x=9±492

rarrx=(9+-7)/(2)x=9±72

Now, we have 22 values for xx

1)color(orange)(x=(9+7)/21)x=9+72

2)color(indigo)(x=(9-7)/22)x=972

Solve

1)color(green)(x=(9+7)/2=16/2=81)x=9+72=162=8

2)color(green)(x=(9-7)/22)x=972