How do you solve x^2+x-10=0x2+x10=0?

1 Answer
Feb 26, 2016

The solutions are:
x= (-1+sqrt(41))/2x=1+412

x= (-1-sqrt(41))/2x=1412

Explanation:

x^2 +x -10=0x2+x10=0

The equation is of the form color(blue)(ax^2+bx+c=0ax2+bx+c=0 where:
a=1, b=1, c=-10a=1,b=1,c=10

The Discriminant is given by:

Delta=b^2-4*a*c

= (1)^2-(4* 1*-10)

= 1 +40 = 41

The solutions are found using the formula
x=(-b+-sqrtDelta)/(2*a)

x = ((-1)+-sqrt(41))/(2*1) = (-1+-sqrt(41))/2

The solutions are:
x= (-1+sqrt(41))/2

x= (-1-sqrt(41))/2