How do you solve #x+2y+3w+4z = 10#, #2x+y+w-z = 1#, #3x+y+4w+3z=22#, and #-2x+6y+4w+20z = 18# using matrices?
1 Answer
See explanation...
Explanation:
Write these equations as a
Start with:
#((1, 2, 3, 4, 10), (2, 1, 1, -1, 1), (3, 1, 4, 3, 22), (-2, 6, 4, 20, 18))#
Add row
#((1, 2, 3, 4, 10), (2, 1, 1, -1, 1), (3, 1, 4, 3, 22), (0, 7, 5, 19, 19))#
Subtract rows
#((1, 2, 3, 4, 10), (2, 1, 1, -1, 1), (0, -2, 0, -2, 11), (0, 7, 5, 19, 19))#
Subtract twice row
#((1, 2, 3, 4, 10), (0, -3, -5, -9, -19), (0, -2, 0, -2, 11), (0, 7, 5, 19, 19))#
Add row
#((1, 2, 3, 4, 10), (0, -3, -5, -9, -19), (0, -2, 0, -2, 11), (0, 0, 0, 6, 22))#
Multiply row
#((1, 2, 3, 4, 10), (0, -3, -5, -9, -19), (0, -6, 0, -6, 33), (0, 0, 0, 6, 22))#
Subtract twice row
#((1, 2, 3, 4, 10), (0, -3, -5, -9, -19), (0, 0, 10, 12, 71), (0, 0, 0, 6, 22))#
Multiply row
#((1, 2, 3, 4, 10), (0, 1, 5/3, 3, 19/3), (0, 0, 10, 12, 71), (0, 0, 0, 6, 22))#
Subtract twice row
#((1, 0, -1/3, -2, -8/3), (0, 1, 5/3, 3, 19/3), (0, 0, 10, 12, 71), (0, 0, 0, 6, 22))#
Divide row
#((1, 0, -1/3, -2, -8/3), (0, 1, 5/3, 3, 19/3), (0, 0, 1, 6/5, 71/10), (0, 0, 0, 6, 22))#
Add
#((1, 0, 0, -8/5, -3/10), (0, 1, 5/3, 3, 19/3), (0, 0, 1, 6/5, 71/10), (0, 0, 0, 6, 22))#
Divide row
#((1, 0, 0, -8/5, -3/10), (0, 1, 5/3, 3, 19/3), (0, 0, 1, 6/5, 71/10), (0, 0, 0, 1, 11/3))#
Add
#((1, 0, 0, 0, 167/30), (0, 1, 5/3, 3, 19/3), (0, 0, 1, 6/5, 71/10), (0, 0, 0, 1, 11/3))#
Subtract
#((1, 0, 0, 0, 167/30), (0, 1, 0, 1, -11/2), (0, 0, 1, 6/5, 71/10), (0, 0, 0, 1, 11/3))#
Subtract row
#((1, 0, 0, 0, 167/30), (0, 1, 0, 0, -55/6), (0, 0, 1, 6/5, 71/10), (0, 0, 0, 1, 11/3))#
Subtract
#((1, 0, 0, 0, 167/30), (0, 1, 0, 0, -55/6), (0, 0, 1, 0, 27/10), (0, 0, 0, 1, 11/3))#
Provided I have made no arithmetic errors:
#{ (x = 167/30), (y = -55/6), (w = 27/10), (z = 11/3) :}#