How do you solve -x + 2y - 3z = 0 , 2x + z = 0 , and 3x - 4y + 4z = 2 using matrices?

1 Answer
Mar 17, 2018

The solution is S=((x=2/5),(y=-1),(z=-4/5))

Explanation:

Perform the Gauss- Jordan elimination on the augmented matrix

A=((-1,2,-3,|,0),(2,0,1,|,0),(3,-4,4,|,2))

Make the pivot in the first column by

R_1larr(-1)xxR_1

=((1,-2,3,|,0),(2,0,1,|,0),(3,-4,4,|,2))

Eliminate the first column by

R_2larrR_2-2R_1 and R_3larrR_3-3R_1

=((1,-2,3,|,0),(0,4,-5,|,0),(0,2,-5,|,2))

Make the pivot in the second column by

R_2larrR_2/4

=((1,-2,3,|,0),(0,1,-5/4,|,0),(0,2,-5,|,2))

Eliminate the second column by

R_3larrR_3-2R_2 and R_1larrR_1+2R_2

=((1,0,1/2,|,0),(0,1,-5/4,|,0),(0,0,-5/2,|,2))

Make the pivot in the third column by

R_3larrR_3/(-5/2)

=((1,0,1/2,|,0),(0,1,-5/4,|,0),(0,0,1,|,-4/5))

Eliminate the third column by

R_1larrR_1-1/2R_3 and R_2larrR_2+5/4R_3

=((1,0,0,|,2/5),(0,1,0,|,-1),(0,0,1,|,-4/5))

The solution is

S=((x=2/5),(y=-1),(z=-4/5))