#color(blue)(x+4=3x^2#
#rarrx=3x^2-4#
#rarr0=3x^2-4-x#
Rewrite in standard form
#color(purple)(rarr3x^2-x-4=0#
This is a Quadratic equation (in form #ax^2+bx+c=0#)
Use Quadratic formula
#color(brown)(x=(-b+-sqrt(b^2-4ac))/(2a)#
Where
#color(red)(a=3,b=-1,c=-4#
#rarrx=(-(-1)+-sqrt(-1^2-4(3)(-4)))/(2(3))#
#rarrx=(1+-sqrt(1-4(-12)))/(6)#
#rarrx=(1+-sqrt(1-(-48)))/(6)#
#rarrx=(1+-sqrt(49))/(6)#
#rarrx=(1+-7)/(6)#
Now we have #2# values for #x#
#color(indigo)( x=(1+7)/(6)=8/6=4/3#
#color(orange)(x=(1-7)/(6)=-6/6=-1#
#color(blue)(ul bar |x=4/3,-1|#