How do you solve x^4+i=0?

2 Answers
Apr 4, 2017

= cis ((-pi)/8 ), cis ((3pi)/8 ), cis ((7pi)/8 ), cis ((11pi)/8 )

Explanation:

x^4 = - i

x = (- i)^(1/4)

Using Euler's formula (or DeMoivre's theorem, if you like):

-i = cos ((-pi)/2 + 2n pi) + i sin ((-pi)/2 + 2n pi) equiv cis ((-pi)/2 + 2n pi)

= e^(i ((-pi)/2 + 2 n pi))

So:

(-i)^(1/4) = e^(i ((-pi)/2 + 2 n pi)/4)

= e^(i ((-pi)/8 + (n pi)/2))

= cis ((-pi)/8 + (n pi)/2)

Running through the n's:

= cis ((-pi)/8 ), cis ((3pi)/8 ), cis ((7pi)/8 ), cis ((11pi)/8 )

And then they start repeating.

May 21, 2017

The four roots are:

x=+-(sqrt(2+sqrt(2))/2 - sqrt(2-sqrt(2))/2i)

x=+-(sqrt(2-sqrt(2))/2 + sqrt(2+sqrt(2))/2i)

Explanation:

Here's an alternative non-trigonometric method...

If a, b are real numbers with b != 0, then the square roots of a+bi are:

+-((sqrt((sqrt(a^2+b^2)+a)/2)) + (b/abs(b) sqrt((sqrt(a^2+b^2)-a)/2))i)

(See: https://socratic.org/s/aES256Hm)

Applying this to the square root of -i = color(blue)(0)+(color(blue)(-1))i we find that its square roots are:

+-((sqrt((sqrt(color(blue)(0)^2+(color(blue)(-1))^2)+color(blue)(0))/2)) - (sqrt((sqrt(color(blue)(0)^2+(color(blue)(-1))^2)-color(blue)(0))/2))i)

=+-(sqrt(2)/2-sqrt(2)/2i)

The square roots of sqrt(2)/2-sqrt(2)/2i are:

+-((sqrt((sqrt((color(blue)(sqrt(2)/2))^2+(color(blue)(-sqrt(2)/2))^2)+color(blue)(sqrt(2)/2))/2)) - (sqrt((sqrt((color(blue)(sqrt(2)/2))^2+(color(blue)(-sqrt(2)/2))^2)-color(blue)(sqrt(2)/2))/2))i)

=+-((sqrt((sqrt(1/2+1/2)+sqrt(2)/2))/2)) - (sqrt((sqrt(1/2+1/2)-sqrt(2)/2)/2))i)

=+-((sqrt((1+sqrt(2)/2)/2)) - (sqrt((1-sqrt(2)/2)/2))i)

=+-(sqrt(2+sqrt(2))/2 - sqrt(2-sqrt(2))/2i)

Rather than simplifying again, note that we can find the square roots of -sqrt(2)/2+sqrt(2)/2i by multiplying these by i to get:

+-(sqrt(2-sqrt(2))/2 + sqrt(2+sqrt(2))/2i)

So the fourth roots of -i (i.e. the roots of x^4+i = 0) are:

+-(sqrt(2+sqrt(2))/2 - sqrt(2-sqrt(2))/2i)

+-(sqrt(2-sqrt(2))/2 + sqrt(2+sqrt(2))/2i)