How do you solve x^4+i=0?
2 Answers
Explanation:
Using Euler's formula (or DeMoivre's theorem, if you like):
So:
Running through the
And then they start repeating.
The four roots are:
x=+-(sqrt(2+sqrt(2))/2 - sqrt(2-sqrt(2))/2i)
x=+-(sqrt(2-sqrt(2))/2 + sqrt(2+sqrt(2))/2i)
Explanation:
Here's an alternative non-trigonometric method...
If
+-((sqrt((sqrt(a^2+b^2)+a)/2)) + (b/abs(b) sqrt((sqrt(a^2+b^2)-a)/2))i)
(See: https://socratic.org/s/aES256Hm)
Applying this to the square root of
+-((sqrt((sqrt(color(blue)(0)^2+(color(blue)(-1))^2)+color(blue)(0))/2)) - (sqrt((sqrt(color(blue)(0)^2+(color(blue)(-1))^2)-color(blue)(0))/2))i)
=+-(sqrt(2)/2-sqrt(2)/2i)
The square roots of
+-((sqrt((sqrt((color(blue)(sqrt(2)/2))^2+(color(blue)(-sqrt(2)/2))^2)+color(blue)(sqrt(2)/2))/2)) - (sqrt((sqrt((color(blue)(sqrt(2)/2))^2+(color(blue)(-sqrt(2)/2))^2)-color(blue)(sqrt(2)/2))/2))i)
=+-((sqrt((sqrt(1/2+1/2)+sqrt(2)/2))/2)) - (sqrt((sqrt(1/2+1/2)-sqrt(2)/2)/2))i)
=+-((sqrt((1+sqrt(2)/2)/2)) - (sqrt((1-sqrt(2)/2)/2))i)
=+-(sqrt(2+sqrt(2))/2 - sqrt(2-sqrt(2))/2i)
Rather than simplifying again, note that we can find the square roots of
+-(sqrt(2-sqrt(2))/2 + sqrt(2+sqrt(2))/2i)
So the fourth roots of
+-(sqrt(2+sqrt(2))/2 - sqrt(2-sqrt(2))/2i)
+-(sqrt(2-sqrt(2))/2 + sqrt(2+sqrt(2))/2i)