How do you solve x^5+1=0?

1 Answer
Mar 10, 2017

Solutions are cos((pi)/5)+isin((pi)/5)
-cos((2pi)/5)+isin((2pi)/5), -1
-cos((2pi)/5)-isin((2pi)/5) and cos((pi)/5)-isin((pi)/5)

Explanation:

As x^5+1=0, we have x^5=-1 and x=root(5)(-1)=(-1)^(1/5)

Hence solution of x^5+1=0 means to find fifth roots of -1.

Note that as -1=cospi+isinpi, and we can also write

-1=cos(2npi+pi)+isin(2npi+pi)

and using De Moivre's Theorem

(-1)^(1/5)=cos((2npi+pi)/5)+isin((2npi+pi)/5)

and five roots, which are solutions of x^5+1=0 can be obtained by putting n=0,1,2,3 and 4 (after 4 roots will start repeating) and these are

cos((pi)/5)+isin((pi)/5)
cos((3pi)/5)+isin((3pi)/5)=-cos((2pi)/5)+isin((2pi)/5)
cos((5pi)/5)+isin((5pi)/5)=cospi+isinpi=-1
cos((7pi)/5)+isin((7pi)/5)=-cos((2pi)/5)-isin((2pi)/5)
cos((9pi)/5)+isin((9pi)/5)=cos((pi)/5)-isin((pi)/5)