How do you solve x(x-4)-2=43?

2 Answers
Apr 14, 2018

x_"1"=-5, x_"2"=9

Explanation:

x(x-4)-2=43
x*x-x*4-2=43
x²-4x-2-43=43-43
x²-4x-45=0
Δ=(-4)²-4*1*(-45)
Δ=196
x=(-b+-sqrt(Δ))/(2a)
x_"1"=(-(-4)-sqrt(196))/2
x_"2"=(-(-4)+sqrt(196))/2
x_"1"=-5, x_"2"=9
\0/ here's our answer!

Apr 14, 2018

x=9 or -5

Explanation:

Expand the bracket

x(x-4)-2=43 => x^2-4x-2=43

Subtract 43 from both sides

x^2-4x-45=0

Factorise

(x-9)(x +5)=0

So x=9 or -5