How do you use a Taylor series to prove Euler's formula?

1 Answer
Nov 15, 2014

Euler's Formula

e^{i theta}=cos theta + i sin thetaeiθ=cosθ+isinθ


Let us first review some useful power series.

e^x=1/{0!}+x/{1!}+x^2/{2!}+cdotsex=10!+x1!+x22!+

cos x=1/{0!}-x^2/{2!}+x^4/{4!}-cdotscosx=10!x22!+x44!

sin x=x/{1!}-x^3/{3!}+x^5/{5!}-cdotssinx=x1!x33!+x55!

Now, we are ready to prove Euler's Formula.

Proof

By rewriting as a power series,

e^{i theta}=1/{0!}+(i theta)/{1!}+(itheta)^2/{2!}+(i theta)^3/{3!}+(i theta)^4/{4!}+(i theta)^5/{5!}+cdotseiθ=10!+iθ1!+(iθ)22!+(iθ)33!+(iθ)44!+(iθ)55!+

by distributing the powers,

=1/{0!}+i theta/{1!}+i^2 theta^2/{2!}+i^3 theta^3/{3!}+i^4 theta^4/{4!}+i^5 theta^5/{5!}+cdots=10!+iθ1!+i2θ22!+i3θ33!+i4θ44!+i5θ55!+

by i^2=-1i2=1

=1/{0!}+i theta/{1!}-theta^2/{2!}-i theta^3/{3!}+theta^4/{4!}+i theta^5/{5!}-cdots=10!+iθ1!θ22!iθ33!+θ44!+iθ55!

by separating the real part and the imaginary part,

=(1/{0!}-theta^2/{2!}+theta^4/{4!}-cdots)+i(theta/{1!}-theta^3/{3!}+theta^5/{5!}-cdots)=(10!θ22!+θ44!)+i(θ1!θ33!+θ55!)

by identifying the power series,

=cos theta + i sin theta=cosθ+isinθ

Hence, we have Euler's Formula

e^{i theta}=cos theta+i sin thetaeiθ=cosθ+isinθ.


I hope that this was helpful.