How do you use Law of sines, given A=102, b=13, c=10?

1 Answer
Mar 26, 2018

color(maroon)(a = 17.97, hat B = 45.03^@, hat C = 32.97^@a=17.97,ˆB=45.03,ˆC=32.97

color(brown)("Area of the triangle " A_t = (1/2) b c sin A = color(brown)(63.58 " sq units"Area of the triangle At=(12)bcsinA=63.58 sq units

Explanation:

hat A = 102^@, b = 13, c = 10ˆA=102,b=13,c=10

We cannot directly use Law of Sines.

"First let's use Law of Cosines to find the third side " color(brown)(a)First let's use Law of cosines to find the third side a

![http://www.dummies.com/education/math/trigonometry/laws-of-sines-and-cosines/](useruploads.socratic.orguseruploads.socratic.org)

a^2 = b^2 + c^2 - (2 b c cos A)a2=b2+c2(2bccosA)

a = sqrt(13^2 + 10^2 - (2 * 13 * 10 * cos 102)) = 17.97 " units"a=132+102(21310cos102)=17.97 units

Only one triangle is possible, having " " hatA = 102^@ ˆA=102 an obtuse angle.

Since we know all the three sides and one angle, we can apply law of sines to find the other two angles.

sin A / a = sin B / b = sin C / csinAa=sinBb=sinCc

hat B = sin ^-1 ((b.sin A) / a) = sin^-1 ((13 * sin 102)/17.97) = 45.03^@ˆB=sin1(b.sinAa)=sin1(13sin10217.97)=45.03

Similarly, hat C = sin _1 ((10 * sin 102) / 17.97) = 32.97^@ˆC=sin1(10sin10217.97)=32.97

"Area of the triangle " A_t = (1/2) b c sin A = (1/2) * 13 * 10 * sin 102 = color(maroon)(63.58 " sq units"Area of the triangle At=(12)bcsinA=(12)1310sin102=63.58 sq units