How do you use laws of exponents to simplify (3x^3y)^2(-4x^2y^4)^3?

1 Answer
Aug 5, 2015

=color(blue)(-576* x^12* y^14

Explanation:

(3x^3y)^color(blue)(2) * (−4x^2y^4)^color(blue)(3

  • As per property:
    color(blue)((ab)^m =a^m * b^m

Applying the same property to the expression,the exponents outside the brackets are multiplied with each of the terms within brackets.

=(3^color(blue)(2)x^color(blue)((3*2))y^color(blue)(2)) * (−4^color(blue)(3)x^color(blue)((2*3))y^(4 *color(blue)(3)))

=(color(blue)(9x^6y^2)) * ( - 64x^6y^12)

=(-9*64) (x^6 *x^6) (y^2*y^12)

  • As per property
    color(blue)(a^m*a^n = a^(m+n)

Applying the same to the exponents of x and y

=(-9*64) (x^color(blue)(6+6)) (y^color(blue)(2 + 12))

=color(blue)(-576* x^12* y^14