How do you use limits to evaluate int 8xdx from [0,2]?

1 Answer
Dec 6, 2016

Evaluating an integral using limits will give you the formula:

int_a^bf(x)dx=lim_(n->oo)sum_(i=1)^nf(x_i)*Deltax

Where:
Deltax=(b-a)/n

x_i=a+iDeltax

Explanation:

So for:

int_(0)^2 8xdx

Deltax=2/n

x_i=(2i)/n

=lim_(n->oo)sum_(i=1)^n8((2i)/n)*2/n

=lim_(n->oo)sum_(i=1)^n(32i)/n^2

We can pull out the constant:

=lim_(n->oo)32/n^2sum_(i=1)^ni

i=(n(n+1))/2

=lim_(n->oo)32/n^2*(n(n+1))/2

Now, here you can skip some tedious algebra:

Since the degree of the denominator is 2 and the degree of the numerator is also two, the limit will just be a ratio:

Thus, =lim_(n->oo)32/n^2*(n(n+1))/2=16