How do you use limits to evaluate int(x^2+4x-2)dx(x2+4x2)dx from [1,4]?

1 Answer
Apr 26, 2017

Here is a limit definition of the definite integral. (I don't know if it's the one you are using.)

.int_a^b f(x) dx = lim_(nrarroo) sum_(i=1)^n f(x_i)Deltax.

Where, for each positive integer n, we let Deltax = (b-a)/n

And for i=1,2,3, . . . ,n, we let x_i = a+iDeltax. (These x_i are the right endpoints of the subintervals.)

I prefer to do this type of problem one small step at a time.

int_1^4 (x^2+4x-2) dx.

Find Delta x

For each n, we get

Deltax = (b-a)/n = (4-1)/n = 3/n

Find x_i

And x_i = a+iDeltax = 1+i3/n = 1+(3i)/n

Find f(x_i)

f(x_i) = (x_i)^2 + 4(x_i) - 2 = (1+(3i)/n)^2 + 4(1+(3i)/n) - 2

= 1+(6i)/n+(9i^2)/n^2 +4+(12i)/n-2

= (9i^2)/n^2 + (18i)/n + 3

Find and simplify sum_(i=1)^n f(x_i)Deltax in order to evaluate the sums.

sum_(i=1)^n f(x_i)Deltax = sum_(i=1)^n( (9i^2)/n^2 + (18i)/n + 3) 3/n

= sum_(i=1)^n( (27i^2)/n^3 + (54i)/n^2 + 9/n)

=sum_(i=1)^n (27i^2)/n^3 + sum_(i=1)^n(54i)/n^2 + sum_(i=1)^n 9/n

=27/n^3sum_(i=1)^n i^2 + 54/n^2 sum_(i=1)^n i + 9/n sum_(i=1)^n 1

Evaluate the sums

= 27/n^3((n(n+1)(2n+1))/6) + 45/n^2((n(n+1))/2) + 15/n(n)

(We used summation formulas for the sums in this step.)

Rewrite before finding the limit

sum_(i=1)^n f(x_i)Deltax = 27/n^3((n(n+1)(2n+1))/6) + 54/n^2((n(n+1))/2) + 9/n(n)

= 27/6((n(n+1)(2n+1))/n^3) + 54/2((n(n+1))/n^2) + 9

= 9/2((n(n+1)(2n+1))/n^3) + 27((n(n+1))/n^2) + 9

Now we need to evaluate the limit as nrarroo.

lim_(nrarroo) ((n(n+1)(2n+1))/n^3) = 2

lim_(nrarroo) ((n(n+1))/n^2) = 1

To finish the calculation, we have

int_1^4 (x^2+4x-2) dx= lim_(nrarroo) (9/2((n(n+1)(2n+1))/n^3) + 27((n(n+1))/n^2) + 9)

= 9/2(2) + 27(1) + 9

= 45