How do you use limits to evaluate int (x+2)dx from [1,4]?

2 Answers
Apr 17, 2017

Perform the integration as if the integral were indefinite but without a constant of integration.
Subtract the expression evaluated at the lower limit from the expression evaluated at the upper limit.

Explanation:

Given: int_1^4 (x+2)dx

Perform the integration as if the integral were indefinite but without a constant of integration:

int_1^4 (x+2)dx= {:x^2/2+2x]_1^4

Subtract the resulting expression evaluated at the lower limit from the expression evaluated at the upper limit:

int_1^4 (x+2)dx= (4^2/2+2(4))- (1^2/2+2(1))

int_1^4 (x+2)dx= 8+8- 1/2-2

int_1^4 (x+2)dx= 13.5

Apr 18, 2017

int_1^4 \ (x+2) \ dx = 13.5

Explanation:

By definition of an integral, then

int_a^b \ f(x) \ dx

represents the area under the curve y=f(x) between x=a and x=b. We can estimate this area under the curve using thin rectangles. The more rectangles we use, the better the approximation gets, and calculus deals with the infinite limit of a finite series of infinitesimally thin rectangles.

That is

int_a^b \ f(x) \ dx = lim_(n rarr oo) (b-a)/n sum_(i=1)^n \ f(a + i(b-a)/n)

Here we have f(x)=x+2 and we partition the interval [1,4] using Delta = {1, 1+3*1/n, 1+3*2/n, ..., 1+3*n/n }

And so:

I = int_1^4 \ (x+2) \ dx
\ \ = lim_(n rarr oo) 3/n sum_(i=1)^n \ f(1+3*i/n)
\ \ = lim_(n rarr oo) 3/n sum_(i=1)^n \ ((1+3*i/n)+2)
\ \ = lim_(n rarr oo) 3/n sum_(i=1)^n \ (3+(3i)/n)
\ \ = lim_(n rarr oo) 3/n {sum_(i=1)^n 3+ sum_(i=1)^n (3i)/n }
\ \ = lim_(n rarr oo) 3/n {3n+ 3/nsum_(i=1)^n i }

Using the standard summation formula:

sum_(r=1)^n r = 1/2n(n+1)

we have:

I = lim_(n rarr oo) 3/n {3n+ 3/n*1/2n(n+1) }

\ \ = lim_(n rarr oo) 3/n {3n+ 3/2(n+1) }

\ \ = lim_(n rarr oo) 3/n*3/2 {2n+ (n+1) }

\ \ = lim_(n rarr oo) 9/(2n) (3n+1)

\ \ = lim_(n rarr oo) (27/2+9/(2n))
\ \ = 27/2

\ \ = 13.5