Substitute x = tant, dx= sec^2t
int (4x^3)/(x^2+1)^2dx = int (4tan^3tsec^2t)/(tan^2t+1)^2dt
Use now the trigonometric identity:
1+tan^2t = sec^2t
int (4x^3)/(x^2+1)^2dx = int (4tan^3tsec^2t)/sec^4tdt
int (4x^3)/(x^2+1)^2dx = int (4tan^3t)/sec^2tdt
int (4x^3)/(x^2+1)^2dx = int (4sin^3tcos^2)/cos^3tdt
int (4x^3)/(x^2+1)^2dx = int (4sin^3t)/costdt
int (4x^3)/(x^2+1)^2dx = 4int ((1-cos^2t)sint)/costdt
int (4x^3)/(x^2+1)^2dx = -4int (1/cost-cost) d(cost)
int (4x^3)/(x^2+1)^2dx = -4ln abs (cost) +2 cos^2t + C
using the properties of logarithms:
int (4x^3)/(x^2+1)^2dx = 2ln (1/ cos^2t) +2 cos^2t + C
To undo the substitution note that:
cos^2t = 1/sec^2t = 1/(1+tan^2t) = 1/(1+x^2)
int (4x^3)/(x^2+1)^2dx = 2ln (1+x^2) +2/(1+x^2)+C