How do you use substitution to integrate (4x^3)/( (x^2+1)^2)?

2 Answers
Mar 5, 2018

I tried this:

Explanation:

Have a look:
enter image source here

Mar 5, 2018

int (4x^3)/(x^2+1)^2dx = 2ln (1+x^2) +2/(1+x^2)+C

Explanation:

Substitute x = tant, dx= sec^2t

int (4x^3)/(x^2+1)^2dx = int (4tan^3tsec^2t)/(tan^2t+1)^2dt

Use now the trigonometric identity:

1+tan^2t = sec^2t

int (4x^3)/(x^2+1)^2dx = int (4tan^3tsec^2t)/sec^4tdt

int (4x^3)/(x^2+1)^2dx = int (4tan^3t)/sec^2tdt

int (4x^3)/(x^2+1)^2dx = int (4sin^3tcos^2)/cos^3tdt

int (4x^3)/(x^2+1)^2dx = int (4sin^3t)/costdt

int (4x^3)/(x^2+1)^2dx = 4int ((1-cos^2t)sint)/costdt

int (4x^3)/(x^2+1)^2dx = -4int (1/cost-cost) d(cost)

int (4x^3)/(x^2+1)^2dx = -4ln abs (cost) +2 cos^2t + C

using the properties of logarithms:

int (4x^3)/(x^2+1)^2dx = 2ln (1/ cos^2t) +2 cos^2t + C

To undo the substitution note that:

cos^2t = 1/sec^2t = 1/(1+tan^2t) = 1/(1+x^2)

int (4x^3)/(x^2+1)^2dx = 2ln (1+x^2) +2/(1+x^2)+C