How do you use substitution to integrate int(x^4(17-4x^5)^5 dx)?

1 Answer
Jul 22, 2018

I=intx^4(17-4x^5)^5dx=int(17-4x^5)^5*x^4dx
I=-1/20int[17-4x^5]^5*d(17-4x^5)=-1/20(17-4x^5)^6/6+c
:.I=-1/120(17-4x^5)^6+c

Explanation:

Here ,

I=intx^4(17-4x^5)^5dx=int(17-4x^5)^5*x^4dx

Subst. 17-4x^5=u=>-20x^4dx=du=>x^4dx=-1/20du

So, I=-1/20intu^5du

:,I=-1/20u^6/6+c

:.I=-1/120(17-4x^5)^6+c