How do you use substitution to integrate x/(1-x)?

1 Answer
Apr 18, 2018

int ( x/(1-x) ) dx

u = 1- x

du = -dx

dx = -du

Substitute back in

int ( x/u )* -du

We still have an x in the problem, so let's use our u substitution to solve for x:

u = 1-x

x = 1-u

Now we have

-int ( (1-u)/u )* du

- int ( 1/u - u/u )

Split it up

- int ( (1)/u )* du + int (u/u) du

- int ( (1)/u )* du + int du

- ln|u| + u

Get back in terms of x

-ln | 1-x | + 1- x