How do you use substitution to integrate (x^2)(sinx^3) ?

1 Answer
Jul 27, 2015

int (x^2)(sinx^3) dx = -1/3cosx^3 +C

Explanation:

int (x^2)(sinx^3) dx

Let u = x^3 so that du = 3x^2 dx

Out integral becomes:

1/3 int (sinx^3) 3x^2dx = 1/3 int sin u du

= 1/3 (-cosu) +C

= -1/3cosx^3 +C

Check the answer by differentiating:

d/dx(-1/3cosx^3 +C) = -1/3* -sin(x^3) * 3x^2

= sin(x^3)* x^2

Looks good, so that's it.