How do you use substitution to integrate x2(x2)12?

1 Answer
Mar 8, 2018

The answer is =27(x2)72+85(x2)52+83(x2)32+C

Explanation:

We need

xndx=xn+1n+1+C(n1)

Perform the substitution

u=x2, , dx=du

Therefore,

x2x2dx=(u+2)2udu

=(u2+4u+4)udu

=(u52+4u32+4u12)du

=u52du+4u32du+4u12du

=u7272+4u5252+4u3232

=27u72+85u52+83u32

=27(x2)72+85(x2)52+83(x2)32+C