How do you find the derivative of y=ln(sin(x))y=ln(sin(x)) ?

2 Answers
May 19, 2018

cotxcotx

Explanation:

We use the chain rule, which states that,

dy/dx=dy/(du)*(du)/dxdydx=dydududx

Let u=sinx,:.(du)/dx=cosx.

Then, y=lnu,dy/(du)=1/u.

Combining, we get:

dy/dx=1/u*cosx

=cosx/u

Substituting back u=sinx, we get:

=cosx/sinx

Notice how it equals to:

=(sinx/cosx)^-1

But sinx/cosx=tanx, so we get:

=(tanx)^-1

=1/tanx

=cotx

May 19, 2018

"dy/dx=cotx

Explanation:

"differentiate using the "color(blue)"chain rule"

"given "y=f(g(x))" then"

dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"

y=ln(sinx)

rArrdy/dx=1/sinx xxd/dx(sinx)

color(white)(rArrdy/dx)=cosx/sinx=cotx