How do you use the distributive property to find 9 x 99?

1 Answer
Oct 18, 2017

9xx99=color(red)(891)

Explanation:

9xx99
color(white)("XXX")=9xx(90+9)

color(white)("XXX")=underbrace(9xx90) + underbrace(9xx9)color(white)("xxx")...the distributive property

color(white)("XXX")=810 +81

color(white)("XXX")=810
color(white)("XX=X")ul(+color(white)(".")81)
color(white)("XXXXX")891

~~~~~~~~~~~~~~ OR ~~~~~~~~~~~~~~~~~~~~~~~~~

9xx99
color(white)("XXX")=9xx(100-1)

color(white)("XXX")=underbrace(9xx100)-underbrace(9xx1)color(white)("xxx")...the distributive property

color(white)("XXX")=900 -9

color(white)("XXX")=891

~~~~~~~~~~~~~ OR ~~~~~~~~~~~~~~~~~~~~~~~~~~

9xx99
color(white)("XXX")=(10-1)xx99

color(white)("XXX")=underbrace(10xx99)-underbrace(1xx99)color(white)("xxx")...distributive property

color(white)("XXX")=990-99

color(white)("XXX")=891