How do you use the important points to sketch the graph of #F(x)=x²-4x+9 #?

1 Answer
May 31, 2018

Refer to the explanation.

Explanation:

Given:

#f(x)=x^2-4x+9# is a quadratic equation in standard form:

#f(x)=ax^2+bx+c#,

where:

#a=1#, #b=-4#, #c=9#

Determine the discriminant #(b^2-4ac)# and its relationship to zero.

#b^2-4ac=#

#(-4^2-4*1*9)=#

#-52#

Since the discriminant is less than zero, the parabola does not touch the x-axis, so there are no roots. We will need to determine the vertex, y-intercept, and additional points.

Vertex: maximum or minimum point on the parabola

The x-coordinate is determined using the formula #x=(-b)/(2a)#.

#x=(-(-4))/(2*1)#

#x=4/2#

#x=2#

To find the y-coordinate of the vertex, substitute #y# for #f(x)# and substitute #2# for #x#.

#y=2^2-4(2)+9#

#y=4-8+9#

#y=5#

The vertex is #(2,5)#.

Y-intercept: value of #y# when #x=0#

Substitute #0# for #x# in the equation and solve for #y#.

#y=0^2-4(0)+9#

#y=9#

The y-intercept is #(0,9)#.

Additional points: select values for #x# and solve for #y#.

Point 1: #x=4#

#y=4^2-4(4)+9#

#y=16-16+9#

#y=9#

Point 1 is #(4,9)#

Point 2: #x=-1#

#y=-1^2-4(-1)+9#

#y=1+4+9#

#y=14#

Point 2 is #(-1,14)#

Point 3: #x=5#

#y=5^2-4(5)+9#

#y=25-20+9#

#y=14#

Point 3 is #(5,14)#

Plot the vertex, y-intercept, and the three additional points. Sketch a parabola through the points. Do not connect the dots.

graph{y=x^2-4x+9 [-10.3, 9.7, 5.72, 15.72]}