How do you use the ratio test to test the convergence of the series sum_(n=1)^oo((x+1)^n) / (n!) ?

1 Answer
May 4, 2017

The ratio test is:

L=lim_(nrarroo)|A_(n+1)/A_n|

If L<1 then absolutely convergent
If L=1 inconclusive
If L>1

Explanation:

Given: A_n = ((x+1)^n)/(n!)

A_(n+1) = ((x+1)^(n+1))/((n+1)!)

A_(n+1)/A_n= (((x+1)^(n+1))/((n+1)!))/(((x+1)^n)/(n!)) = (((x+1)^(n+1))/(n+1))/(((x+1)^n)/1)= (x+1)/(n+1)

L=lim_(nrarroo)|(x+1)/(n+1)| = 0

Absolutely convergent.