We know the reference angle is #30^@#, and from the unit circle, we know the coordinates for #30^@# are
#(sqrt3/2,1/2)#
Our angle, #150^@# is in the second quadrant, where cosine is negative and sine is positive. Unit circle coordinates are given by
#(costheta, sintheta)#
This means the coordinates for #150^@# are
#(-sqrt3/2,1/2)#
We know:
#color(blue)(cos150=-sqrt3/2)#
#color(darkblue)(sin150=1/2)#
#color(lime)(tantheta)=color(darkblue)(sintheta)/color(blue)(costheta)#
And from our definitions of trig functions:
#color(red)(cottheta)=1/color(lime)(tantheta)#
#color(darkviolet)(sectheta)=1/color(blue)(costheta)#
#color(orange)(csctheta)=1/color(darkblue)(sintheta)#
After plugging in the appropriate values (and rationalizing the denominator when necessary), we get
#color(lime)(tan150=-sqrt3/3)#
#color(red)(cot150=-sqrt3)#
#color(darkviolet)(sec150=(-2sqrt3)/3)#
#color(orange)(csc150=2)#
Hope this helps!