How do you verify 1-cos^2x=tan^2(-x)cos^2x?

1 Answer
Nov 4, 2016

Verifying the equation of trigonometric identities is determined by applying some properties

color(red)(tanx=sinx/cosx)

color(blue)(tan(-x)=-tanx)

color(purple)(cos^2x+sin^2x=1)

Verifying the equality:
tan^2(-x)cos^2x=(tan(-x))^2cos^2x

tan^2(-x)cos^2x=(color(blue)(-tan(x)))^2cos^2x

tan^2(-x)cos^2x=(-tan(x))^2cos^2x

tan^2(-x)cos^2x=tan^2xcos^2x

tan^2(-x)cos^2x=color(red)((sinx/cosx)^2cos^2x

tan^2(-x)cos^2x=sin^2x/cancel(cos^2x)cancel(cos^2x)

tan^2(-x)cos^2x=color(violet)(sin^2x

We have
color(purple)(cos^2x+sin^2x=1)
rArrcolor(violet)(sin^2x=1-cos^2x

Therefore,
tan^2(-x)cos^2x=color(violet)(1-cos^2x