How do you verify sin^2(-x)=tan^2x/(tan^2x+1)?

1 Answer
Oct 27, 2016

sin^2(-x)=sin^2x

(tan^2x)/(tan^2x+1)=sin^2x

rArr(tan^2x)/(tan^2x+1)=sin^2(-x).

Explanation:

Verifying the equality of the given trigonometric expressions is determined by evaluating each side separately then comparing their results.

These trigonometric identities are used
color(red)(sin(-x)=-sinx)

color(red)(tanx=sinx/cosx)

color(red)(cos^2+sin^2x=1)

sin^2(-x)=(sin(-x))^2=(color(red)(-sinx))^2=sin^2x
color(blue)(sin^2(-x)=sin^2x" " EQ1)

(tan^2x)/(tan^2x+1)

=((color(red)(sinx/cosx))^2)/((color(red)(sinx/cosx))^2+1)

=(sin^2x/cos^2x)/(sin^2x/cos^2x+1)

=(sin^2x/cos^2x)/(color(red)(sin^2x+cos^2x)/cos^2x)

=(sin^2x/cos^2x)/(1/cos^2x)

=sin^2x/cos^2x*cos^2x/1

=sin^2x

color(blue)((tan^2x)/(tan^2x+1)=sin^2x)

color(blue)(sin^2(-x)=sin^2x " "EQ1)

Therefore,

(tan^2x)/(tan^2x+1)=sin^2(-x)