How do you verify sin x + cos x = (2sin^2 x - 1) /(sin x -cos x)?

2 Answers
Jul 9, 2016

sinx + cosx =(2(1 - cos^2x) - 1)/(sinx - cosx)

sinx + cosx= (2 - 2cos^2x - 1)/(sinx - cosx

sinx + cosx = (1 - 2cos^2x)/(sinx - cosx)

Here it looks like we're at a dead end, but in fact we're not.

(sinx + cosx)(sinx - cosx) = 1 - 2cos^2x

sin^2x - cos^2x = 1 - 2cos^2x

1 - cos^2x - cos^2x = 1 - 2cos^2x

1 - 2cos^2x = 1 - 2cos^2x -> "Identity proved!"

Hopefully this helps!

Jul 10, 2016

RHS=(2sin^2x-1)/(sinx-cosx)

=(2sin^2x-(cos^2x+sin^2x))/(sinx-cosx)

=(2sin^2x-cos^2x -sin^2x)/(sinx-cosx)

=(sin^2x-cos^2x)/(sinx-cosx)

=((cancel(sinx-cosx))(sinx+cosx))/(cancel(sinx-cosx))

=(sinx+cosx)=LHS