There are some formulas, named sum-to-product, that say:
sintheta+sinphi=2sin((theta+phi)/2)cos((theta-phi)/2)sinθ+sinϕ=2sin(θ+ϕ2)cos(θ−ϕ2),
sintheta-sinphi=2cos((theta+phi)/2)sin((theta-phi)/2)sinθ−sinϕ=2cos(θ+ϕ2)sin(θ−ϕ2),
costheta+sinphi=2cos((theta+phi)/2)cos((theta-phi)/2)cosθ+sinϕ=2cos(θ+ϕ2)cos(θ−ϕ2),
costheta+cosphi=-2sin((theta+phi)/2)sin((theta-phi)/2)cosθ+cosϕ=−2sin(θ+ϕ2)sin(θ−ϕ2).
So:
-cotx=(2sin((3x+x)/2)cos((3x-x)/2))/(-2sin((3x+x)/2)sin((3x-x)/2))−cotx=2sin(3x+x2)cos(3x−x2)−2sin(3x+x2)sin(3x−x2);
-cotx=-(cosx)/sinx−cotx=−cosxsinx.
That's all.