How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)cotx=sin3x+sinxcos3xcosx?

1 Answer
Feb 6, 2015

There are some formulas, named sum-to-product, that say:

sintheta+sinphi=2sin((theta+phi)/2)cos((theta-phi)/2)sinθ+sinϕ=2sin(θ+ϕ2)cos(θϕ2),
sintheta-sinphi=2cos((theta+phi)/2)sin((theta-phi)/2)sinθsinϕ=2cos(θ+ϕ2)sin(θϕ2),
costheta+sinphi=2cos((theta+phi)/2)cos((theta-phi)/2)cosθ+sinϕ=2cos(θ+ϕ2)cos(θϕ2),
costheta+cosphi=-2sin((theta+phi)/2)sin((theta-phi)/2)cosθ+cosϕ=2sin(θ+ϕ2)sin(θϕ2).

So:

-cotx=(2sin((3x+x)/2)cos((3x-x)/2))/(-2sin((3x+x)/2)sin((3x-x)/2))cotx=2sin(3x+x2)cos(3xx2)2sin(3x+x2)sin(3xx2);

-cotx=-(cosx)/sinxcotx=cosxsinx.

That's all.