How do you write an equation of a line going through (2,1) and (-2,-1)?

1 Answer
Mar 18, 2016

y=1/2x

Explanation:

Recall that the general equation for a line is:

color(teal)(|bar(ul(color(white)(a/a)y=mx+bcolor(white)(a/a)|)))

where:
y=y-coordinate
m=slope
x=x-coordinate
b=y-intercept

Determining the Equation of the Line
1. Start by labelling the coordinates to either be coordinate 1 or 2.

Coordinate 1: (color(red)(x_1),color(teal)(y_1))=(color(red)2,color(teal)1)

Coordinate 2: (color(blue)(x_2),color(darkorange)(y_2))=(color(blue)(-2),color(darkorange)(-1))

2. Find the slope between the two coordinates using the formula, m=(y_2-y_1)/(x_2-x_1).

m=(color(darkorange)(y_2)-color(teal)(y_1))/(color(blue)(x_2)-color(red)(x_1))

m=(color(darkorange)(-1)-color(teal)1)/(color(blue)(-2)-color(red)2)

m=(-2)/(-4)

color(violet)(m=1/2)

3. Find the value of the y-intercept by substituting the slope and either coordinate 1 or 2 into y=mx+b. In this case, we will use coordinate 1.

y=mx+b

color(teal)1=color(violet)(1/2)(color(red)2)+b

1=1+b

b=0

4. Rewrite the equation.

color(green)(|bar(ul(color(white)(a/a)y=1/2xcolor(white)(a/a)|)))