How do you write ln(x^2-3x-40)-1n(x-8)ln(x23x40)1n(x8) as a single logarithm?

1 Answer
Feb 12, 2015

Remember than ln (a/b)=ln a-ln bln(ab)=lnalnb

But now we do this the other way around:

ln(x^2-3x-40)-ln(x-8)=ln(x23x40)ln(x8)=

ln((x^2-3x-40)/(x-8))=ln(x23x40x8)=

We can factorise the top part:

ln(((x-8)(x+5))/((x-8)))=ln((x8)(x+5)(x8))=

Cancel out the (x-8)(x8)'s

Answer:

ln(x+5)ln(x+5)

Extra :
Domain : x>8x>8
(or else the original ln(x-8)ln(x8) would be invalid)