How do you write the complex number in trigonometric form 5-12i?

1 Answer
Jun 6, 2017

In trigonometric form : 13(cos292.62+isin292.62)

Explanation:

Z=a+ib . Modulus: |Z|=sqrt (a^2+b^2); Argument:theta=tan^-1(b/a) Trigonometrical form : Z =|Z|(costheta+isintheta)

Z=5-12i . Modulus |Z|=sqrt(5^2+(-12)^2) =sqrt(25+144)=sqrt169=13

Argument: tan alpha = 12/5= 2.4 . Z lies on fourth quadrant, alpha =tan^-1(2.4) = 67.38^0 :. theta = 360-67.38=292.62^0 :. Z=13(cos292.62+isin292.62)

In trigonometric form expressed as 13(cos292.62+isin292.62) [Ans]