How do you write the complex number in trigonometric form 6-7i67i?

1 Answer
Sep 3, 2017

sqrt85(cos(0.862)-isin(0.862))85(cos(0.862)isin(0.862))

Explanation:

"to convert from"color(blue)" complex to trig. form"to convert from complex to trig. form

"that is "x+yitor(costheta+isintheta)" using"that is x+yir(cosθ+isinθ) using

•color(white)(x)r=sqrt(x^2+y^2)xr=x2+y2

•color(white)(x)theta=tan^-1(y/x)color(white)(x);-pi< theta <=pixθ=tan1(yx)x;π<θπ

"here "x=6" and "y=-7here x=6 and y=7

rArrr=sqrt(6^2+(-7)^2)=sqrt85r=62+(7)2=85

6-7i" is in the fourth quadrant so we must ensure that "theta67i is in the fourth quadrant so we must ensure that θ
"is in the fourth quadrant"is in the fourth quadrant

rArrtheta=tan^-1(7/6)=0.862larrcolor(red)" related acute angle"θ=tan1(76)=0.862 related acute angle

rArrtheta=-0.862larrcolor(red)" in fourth quadrant"θ=0.862 in fourth quadrant

rArr6-7i=sqrt85(cos(-0.862)+isin(-0.862))67i=85(cos(0.862)+isin(0.862))

[cos(-0.862=cos(0.862);sin(-0.862)=-sin(0.862)][cos(0.862=cos(0.862);sin(0.862)=sin(0.862)]

rArr6-7i=sqrt85(cos(0.862)-isin(0.862))67i=85(cos(0.862)isin(0.862))