How do you write the complex number in trigonometric form -8+3i?

1 Answer
Aug 14, 2017

The trigonometric form is =2.92 (cos(159.4^@)+isin(159.4^@))=2.92e^(159.4^@i)

Explanation:

Our complex number is

z=-8+3i

The trigonometric form is

()()z=r(costheta+isintheta)

If our complex number is z=a+ib

r=|z|=sqrt(a^2+b^2)

And

costheta=a/|z| and

sintheta=b/|z|

Therefore,

|z|=sqrt((-8)^2+3^2)=sqrt(64+9)=sqrt73=2.92

costheta=-8/sqrt73

sintheta=3/sqrt73

We are in the Quadrant II

Theta=159.4^@

The trigonometric form is

z=2.92 (cos(159.4^@)+isin(159.4^@))=2.92e^(159.4^@i)