How do you write the expression (1 - i)^5 in the standard form a + bi?

1 Answer
Mar 16, 2016

(1-i)^5 = -4+4i

Explanation:

The exponent in this case isn't too difficult to calculate directly using the binomial theorem. Proceeding with that, we have:

(1-i)^5 = sum_(n=0)^5 ((5),(n))1^(n)(-i)^(5-n)=sum_(n=0)^5 ((5),(n))(-i)^(5-n)

=(-i)^5 + 5(-i)^(4)+10(-i)^3+10(-i)^2+5(-i)^1+(-i)^0

=-i + 5 + 10i - 10 - 5i + 1

=-4+4i