How do you write the trigonometric form of #-6#?

1 Answer
Nov 7, 2016

I found: #z=6[cos(pi)+isin(pi)]#

Explanation:

We can "see" this number (#z=-6#) on the Real axis on a complex plane:
enter image source here

We need the angle #theta# and the modulus (length) to define the characteristics of our number in trig form as:
#z="modulus"[cos(theta)+isin(theta)]#
observing our complex plane we see that:
modulus#=6#
#theta=pi=180^@#
so ve get:
#z=6[cos(pi)+isin(pi)]#