How much greater is (20x^7 - 10x^6 - 9x^5 - 14x^4 + 18x) + (-6x^6 - 12x^5 - 9x^4 - 9x)(20x710x69x514x4+18x)+(6x612x59x49x)?

1 Answer

=20x^7-16x^6-21x^5-23x^4+9x=20x716x621x523x4+9x

Explanation:

(20x^7-10x^6-9x^5-14x^4+18x) + (-6x^6-12x^5-9x^4-9x)(20x710x69x514x4+18x)+(6x612x59x49x)
Index Coefficient
7 --------------(+20+0) =+20(+20+0)=+20
6 --------------(-10-6)=-16(106)=16
5---------------(-9-12)=-21(912)=21
4---------------(-14-9)=-23(149)=23
1--------------- (+18-9)=+9(+189)=+9
Thus,
=20x^7-16x^6-21x^5-23x^4+9x=20x716x621x523x4+9x