How to Prove this? If a + b + c = 0a+b+c=0, Then Show that, a^2 - bc = b^2 - ca = c^2 - aba2bc=b2ca=c2ab.

1 Answer
Apr 3, 2018

See the proof below

Explanation:

If a+b+c=0a+b+c=0

Then,

a=-b-c=-(b+c)a=bc=(b+c)

Therefore,

a^2-bc=(-(b+c))^2-bc=(b+c)^2-bca2bc=((b+c))2bc=(b+c)2bc

=b^2+c^2+2bc-bc=b2+c2+2bcbc

=b^2+c^2+bc=b2+c2+bc

b^2-ca=b^2-c(-(b+c))=b^2+c^2+bcb2ca=b2c((b+c))=b2+c2+bc

c^2-ab=c^2-(-(b+c)b)=c^2+b^2+bcc2ab=c2((b+c)b)=c2+b2+bc

So,

a^2-bc=b^2-ca=c^2-aba2bc=b2ca=c2ab

QEDQED