Calling u(x) = e^x and v(x)= x^n we have
e^x((2^(x^n))^(1/e^x)-(3^(x^n))^(1/e^x))/x^n equiv (u(x))/(v(x))(2^( (v(x))/(u(x)))-3^( (v(x))/(u(x)))) and now making (u(x))/(v(x))=xi(x) we have
lim_(x->oo)e^x((2^(x^n))^(1/e^x)-(3^(x^n))^(1/e^x))/x^n equiv lim_(x->oo)xi(x)(2^(1/(xi(x)))-3^(1/(xi(x))))
but xi(x)->oo as x->oo so
lim_(x->oo)e^x((2^(x^n))^(1/e^x)-(3^(x^n))^(1/e^x))/x^n equiv lim_(y->oo)((2^(1/y)-3^(1/y))/(1/y)) = log_e(2/3)
NOTE:
lim_(y->oo)((2^(1/y)-3^(1/y))/(1/y)) equiv lim_(z->0)(2^z-3^z)/z = log_e(2/3)
because defining f(z) = 2^z-3^z we have
lim_(h->0)(f(0+h)-f(0))/h=lim_(h->0)((2^h-3^h)-(1-1))/h = f'(0) and
f'(z) = 2^z log_e 2-3^z log_e 3 and then
f'(0)=log_e(2/3)