If a - 2b = 15a2b=15 and ab = 11ab=11 then find the value of a^2 + 4b^2a2+4b2?

2 Answers
Jun 23, 2016

a^2+4b^2=269a2+4b2=269

Explanation:

(a-2b)^2=a^2-4ab+4b^2= 15^2(a2b)2=a24ab+4b2=152

then

a^2+4b^2=15^2+4 ab = 15^2+4 xx 11 =269a2+4b2=152+4ab=152+4×11=269

Jun 23, 2016

a^2+4b^2=269.a2+4b2=269.

Explanation:

Method I

Given that, a-2b=15a2b=15
:. (a-2b)^2=15^2=225.
:. a^2-2*a*2b+4b^2=225, i.e., a^2-4ab+4b^2=225.

Letting, ab=11 in this, we have, a^2-4(11)+4b^2=225.

Hence, a^2+4b^2=225+44=269.

Method II

Notice that (a+2b)^2+(a-2b)^2=2(a^2+4b^2).

Here, we replace (a+2b)^2 by (a-2b)^2+8ab, to get,

(a-2b)^2+8ab+(a-2b)^2=2(a^2+4b^2),. & now putting the given values,

225+8*11+225=2(a^2+4b^2)=538, so, (a^2+4b^2)=538/2=269, as before!