If aa and bb are unit vectors and thetaθ is the angle between them, express abs(a-b)|ab| in terms of thetaθ ?

1 Answer
Aug 24, 2017

|veca-vecb|=2sin(theta/2).ab=2sin(θ2).

Explanation:

Suppose that, veca, and vecba,andb are such unit vectors, that,

hat{((veca, vecb))}=theta, theta in [0,pi].

because veca, &, vecb" are unit vectors, ":. |veca|=|vecb|=1....(0).

We know, (1): veca*vecb=|veca|*|vecb|*costheta, and,

(2): |vecx|^2=vecx*vecx.

:., |veca-vecb|^2=(veca-vecb)*(veca-vecb)............[because, (2)],

=veca*(veca-vecb)-vecb*(veca-vecb),

=veca*veca-veca*vecb-vecb*veca+vecb*vecb,

=|veca|^2-2veca*vecb+|vecb|^2...[because, veca*vecb=vecb*veca],

=1-2|veca|*|vecb|*costheta+1......[because, (0), and, (1)],

=2-2*1*1costheta...........[because, (0)],

=2(1-costheta)=2(2sin^2(theta/2)).

rArr |veca-vecb|=2sin(theta/2).

Enjoy Maths.!