If cos(50)=acos(50)=a, then how do you express tan(130)tan(130) in terms of a?

2 Answers
Feb 8, 2015

One method

Assume a=cos50^0a=cos500
tan(130^0) = sin(130^0)/cos(130^0)tan(1300)=sin(1300)cos(1300)
sin(130^0)=sin(90^0+40^0)sin(1300)=sin(900+400)
Expand using sin(A+B)sin(A+B) formula
This will give you
sin(130^0) = cos(40^0)sin(1300)=cos(400)
cos(40^0) = sin(50^0)cos(400)=sin(500) therefore
sin(130^0) = sin(50^0)sin(1300)=sin(500)
sin(130^0) = +sqrt(1-cos^2(50^0))sin(1300)=+1cos2(500)
sin(130^0) =sqrt(1-a^2)sin(1300)=1a2
Similarly for cos(130^0)cos(1300) we get
cos(130^0) = -sin(40^0)cos(1300)=sin(400)
cos (50^0)=sin(40^0)cos(500)=sin(400) hence
cos(130^0) = -cos(50^0)cos(1300)=cos(500)
Combining them gives

tan(130^0) = (-sqrt(1-a^2))/atan(1300)=1a2a

Aug 31, 2015

You can use some identities to make this easier.

cos(50^o) = cos(-50^o) = -cos(130^o)cos(50o)=cos(50o)=cos(130o)

due to

cos(x) = cos(-x)cos(x)=cos(x)
cos(x) = -cos(x+pi)cos(x)=cos(x+π)

Thus, you have:

tan(130^o) = (sin(130^o))/(cos(130^o)) = (-sin(130^o))/(-cos(130^o))tan(130o)=sin(130o)cos(130o)=sin(130o)cos(130o)

Now, as for determining -sin(130^o)sin(130o)... Note that sin^2(130^o) + cos^2(130^o) = 1sin2(130o)+cos2(130o)=1. Therefore:

sin(130^o) = sqrt(1-cos^2(130^o))sin(130o)=1cos2(130o)

=> -sin(130^o) = -sqrt(1-cos^2(130^o))sin(130o)=1cos2(130o)

Finally, you get:

color(blue)(tan(130^o)) = (-sin(130^o))/(-cos(130^o)) = (-sqrt(1-(cos(130^o))^2))/(-cos(130^o))tan(130o)=sin(130o)cos(130o)=1(cos(130o))2cos(130o)

= (-sqrt(1-(-cos(50^o))^2))/(cos(50^o))=1(cos(50o))2cos(50o)

= (-sqrt(1-cos^2(50^o)))/(cos(50^o))=1cos2(50o)cos(50o)

= color(blue)((-sqrt(1-a^2))/(a))=1a2a