If #f_0(x)=1/(1-x)# and #f_k(x)=f_0(f_(k-1)(x))# what is the value of #f_(2016)(2016)#?
1 Answer
Oct 22, 2016
Explanation:
#=1/(1-1/(1-f_0(x))#
#=(1-f_0(x))/(1-f_0(x)-1)#
#=(1-f_0(x))/f_0(x)#
#=1-1/f_0(x)#
#=1-1/(1/(1-x))#
#=1-(1-x)#
#=x#
Note, then, that
In general:
As
#=1/(1-2016)#
#=-1/2015#