If M = ((0,0,0,0,-2),(1,0,0,0,-4),(0,1,0,0,0),(0,0,1,0,0),(0,0,0,1,0)) and A is an invertible rational 5xx5 matrix which commutes with M, then is A necessarily expressible as A = aM^4+bM^3+cM^2+dM+e for some scalar factors a, b, c, d, e?
This M is the companion matrix of the polynomial x^5+4x+2 . It satisfies:
M^5+4M+2 = 0 and since x^5+4x+2 is irreducible (over QQ ), this is its minimum polynomial.
Hence the identity matrix I_5 with M generates a field of matrices all expressible in the form aM^4+bM^3+cM^2+dM+e .
This
M^5+4M+2 = 0 and sincex^5+4x+2 is irreducible (over
Hence the identity matrix
1 Answer
Yes
Explanation:
Note that the powers of
M^0 = ((1, 0, 0, 0, 0),(0, 1, 0, 0, 0),(0, 0, 1, 0, 0),(0, 0, 0, 1, 0), (0, 0, 0, 0, 1))
M^1 = ((0, 0, 0, 0, -2), (1, 0, 0, 0, -4), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0))
M^2 = ((0, 0, 0, -2, 0), (0, 0, 0, -4, -2), (1, 0, 0, 0, -4), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0))
M^3 = ((0, 0, -2, 0, 0), (0, 0, -4, -2, 0), (0, 0, 0, -4, -2), (1, 0, 0, 0, -4), (0, 1, 0, 0, 0))
M^4 = ((0, -2, 0, 0, 0), (0, -4, -2, 0, 0), (0, 0, -4, -2, 0), (0, 0, 0, -4, -2), (1, 0, 0, 0, -4))
Notice in particular that the left hand column of:
aM^4+bM^3+cM^2+dM+eI
is:
((e),(d),(c),(b),(a))
So given an invertible matrix
((a_11),(a_21),(a_31),(a_41),(a_51))
we find that the matrix:
A-(a_51M^4+a_41M_3+a_31M_2+a_21M+a_11I)
has left hand column:
((0),(0),(0),(0),(0))
...so is not invertible.
If
A=a_51M^4+a_41M^3+a_31M^2+a_21M+a_11I